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1. INTRODUCTION 

The problem considered in this paper is the 
estimation of the population total of some char- 
acteristic from a simple random sample contain- 
ing a few large or extreme observations. These 
observations are true observations belonging to 
the population that is being sampled. The 
presence of these observations in the sample will 
tend to make the usual estimate of the population 

total Y 
0 

Ny (where y is the sample mean and 

N the population size) exceed the population 
total Y by a considerable amount though the 
estimation procedure itself is unbiased. It is 

therefore important to deflate the weights for 
such units at the estimation stage once they 
have been sampled and identified. 

Several techniques have been proposed to 
handle unusually large values. Tukey and 
McLaughlin (1963) considered trimmed and Winsor- 
ized sample means from symmetric distributions. 
Crow (1964) has studied weighting procedures for 
observations. Fuller (1960) studied one -sided 
Winsorized means, Winsorization being applied 
to the largest observations only, assuming that 
the right tail of the distribution is well 
approximated by the tail of a Weibull distrib- 
ution. Censored sample procedures have been 
considered by numerous authors (see for example 
Dixon (1960)). Searls (1966) proposed an esti- 
mator that used information external to the 
sample to predetermine a point, T, which separ- 
ates "large" sample observations from the rest. 

Recently, in studying estimators for 
skewed populations, Jenkins, Ringer and Hartley 
(1973) have adopted biased estimators which 

were preferable to Ni. Their quadratic loss 
function incorporated both the squared bias and 
the variance of the estimators, i.e., the mean 
square error (MSE). 

We confine our attention to estimators which 
involve only a change of the usual weights as 

this seems a realistic and practical approach in 
sample surveys. No knowledge of the number of 
large units (outliners) in the population is 
assumed. We propose three estimators which are 
designed to reduce the effect of these large 
observations. The efficiencies of these esti- 
mators are empirically investigated along with 
the efficiency of the post- stratified estimator 
which involves a knowledge of the number of out- 
liers in the population. The criterion for com- 
parison of the proposed estimators with the usual 

estimator is the ratio of the variance of the 
unbiased estimator to the mean square error of 
these estimators. It is shown that, in certain 
situations, these estimators will have a smaller 

mean square error than the usual estimator N. 

2. THE ESTIMATORS 

We assume that a population {Y1, Y2 
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of size N contains T large units. It is 

assumed that T is unknown. These outliers are 
are elements of the population whose Y -value 
exceeds a prespecified value T. A simple random 
sample of size n is drawn without replacement 
from the population and t outliers are identified. 
The estimators which we consider are: 

N -t Y1 
+ n -t (2.1) 

i =1 i =t +1 

N Nt n-t t yi n 
( E - E Y2 = n i t i=t+1 

(2.2) 
and 

t N -rt 
n 

Y3= r yi +I E 
y . (2.3) 

i =1 i =t +1 

Estimator (2.1) assigns weight one to the outlier 
units and adjusts the weights of the non- outliers 
so that the sum of the sample weights adds up to 
N. Estimator (2.2) assigns a weight to the out- 
lier units which is dependent upon the number of 
outliers in the sample. Finally, estimator (2.3) 
generalizes estimator (2.1) in that it assigns an 
optimal weight r to the outlier and non -outlier 
units. 

If T is known a priori, the post- stratified ' 

estimator is: 

Y4 + yi (2.4) 
i =1 i =t +1 

The bias and the mean square error (MSE) of these 
estimators are given in the following section. 

3. THE MSE OF THE ESTIMATORS 

We shall first consider the usual estimator 

of the population total Y0. YO may be expressed 

as the sum of outlier units and non -outlier units 
as: 

N 
t 

YO { E yi + E . (3.1) 
i=1 i=t+l 

The variance of Yo in the form given in (3.1) is 

V(YO) = {f 1 (1-6)2 

+ N(f-1 CZ 2 

+ N(f 1 - 1) -1 ô2 (3.2) 

where f is the sampling fraction, is the ratio 

of the mean of the outlier units V in the pop- 

ulation to the mean of the non -outlier 
v 
units 

in the population, C1 and C2 are the coefficients 



of variation for the non -oulier and outlier units 
in the population respectively. 

It can easily be shown that the biases of 

Y1, Y2 and Y3, for T 2 1 are 

B(Y1) = -T(1-f)(6-1) , 

-T(6-1)(N-T) v 
(3.3) 

B(Y2) = (3.4) 

2N 

B(Y3) = -T(1- rf)(6-1) v . (3.5) 

Note that estimators (2.1) and (2.3) are consist- 
ent whereas estimator (2.2) is not. The mean 
square error (MSE) of these estimators can be 
presented in two ways, depending on T. For T =1, 

the mean square error can be derived exactly. 

For T > 1, the approximate MSE for Y1 and Y3 

is obtained using E(t) /E(t). For T > 1, the 

exact MSE for Y2 has been derived. 

We first present the exact mean square 
errors associated with T = 1. Details of the 
derivations are not given here. 

MSE(Y1) = {(1-f)(1-6)2 

[f(N-1) 
(N-n) + N(1-f)(f-1 

C2 
n-1 N-1 1 v 

MSE(Y ) 

(3.6) 

2 
n(1 -f) +1)2 

= 
{N 

[(1 -f)(1 - 

f (N -1) (n -1) 2n2 
2 1 

-1 
+ (1 

and 

[(1 -f)[1 - f2 (1 + ñ)]2 + f)} v (3.7) 

MSE(Y ) 
3 

= {[(1-f) + f(1-0 
2 
1(1-6) 

2 

[f(N-r)2 NN-n 
N(1-f)(f 1- 2 n-1 N-1 1 v 

(3.8) 

The optimal value of r for (3.8) is given as 

(1 -f) + f(1 -6)2 

o 
(1-0 

Ci + f(1-02 
ro 

g2(N.f.T,6,C1,C2) 

2 

(2f ) [Et + 
n 

3 4 

(Et + + EZ 

3 Et2 
+ 
()2 

n2 

3 4 

N1T (4n2 - 4nEt - 3Et2 + 
2Et 

3 

+ Et 
4 

+ ( 2nf )2 (1-6)2 V(nt + t2)} Y, (3.10) 

where V(nt + t2) = n2 V(t) + 2n Coy (t,t2) 

+ V(t2) and Etk, k =1, 2,3,4, are moments 
obtained from the hypergeometric distribution 
given by 

(N-TT) 

H(tIN,n,T) = 
n-t t 

, t T, N-T > n. 

(n) 

The mean square error of Y3 for T > 1 is 

MSE(Y3) a {r2(1 -6)2 f(1 -f) T(1 -Ñ) 

+ r2(T - 1) f(1-f) CZ 2 
f(NfT) 

[(N-rfT)2 

T2(1-rf)2 - r2f2T] + (1-d)2} . (3.11) 

The optimal value of r for T > 1 is obtained 

by minimizing (3.11). Differentiating (3.11) 
with respect to r and solving for r, we obtain 

Next, we provide expressions for MSE for T > 1. 

(3.12) 

where 
MSE(Y1) (1-6)2 f(1-f) T (1 - 

+(T-1) f(1-f) C2 
d2 

[(N-fT)2 - f2T] C2 
_(1-d)2 fT2 +(1NfT 

f(N-T) 1 

T2 (1-f)2 (1-d)2} . (3.9) 
and 

MSE(Y ) 
[T(1-d)(N-T)(n-1)]2 g2(N,f,T,d,C1,C2) = (1-6)2 fT [(1-f)(1 - + fT] 

2 2n(N-1) 
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+ f(1- f)(T -1)[C22 62 + 

The variance of the post -stratified estimator 

Y4 for T > 1 is given by 

V(Y4) [f 1(1-f)(N-T) + nf] 

+ 62 [f (1-0 + Nnf]) . (3.13) 

4. AN EMPRICAL INVESTIGATION OF THE ESTIMATORS 

To investigate the efficiency and utility 
of the proposed estimators, we have used a var- 
iety of artificial populations. We have studied 
the relative efficiency of these estimators for 
various values of C1, C2, f, N and T. The 

relative efficiency is defined as the ratio of 
the variance of the usual estimator of the total 

to the mean square error of Yi, 1 =1, 2,3,4. 

The empirical investigation has been extensive 
and in view of the difficulty of presenting a 
great number of tables, only six tables are 
presented. Tables 1 through 5 are constructed 
to reveal a difference in the behaviour of the 

estimators Y1, Y2, Y3 and Y4 for various values 

of C1, C2, f and T for a given value of N. 

Within each of these tables C2 and T vary while, 

6, f and C1 are fixed. The tables differ from 

each other by having one of the variables 6, f 

or C1 vary while the other two variables are 

fixed. Table 6 differs from the others in that 

a large value of N and a small sampling fraction 

f have been used. The conclusions drawn from 

these tables, in general, should apply to other 
populations. 

Tables of Relative Efficiencies 

Estimators Y1 Y3 Y4 

1. f0.3 C1= 0.5 N=500 

1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 

2 1.26 1.16 1.26 (1.10) - 0.62 

4 1.37 2.32 1.41 2.00 1.41 (1.49) 2.32 (0.78) 0.77 0.49 

10 1.02 2.13 1.30 2.08 1.37 (2.15) 2.17 (1.32) 1.03 0.74 

15 0.75 1.69 1.10 1.89 1.30 (2.43) 1.92 (1.62) 1.15 0.84 

25 0.48 1.18 0.81 1.56 1.20 (2.72) 1.61 (2.02) 1.28 0.94 

80 0.14 0.40 0.35 0.83 1.06 (3.12) 1.20 (2.77) 1.43 1.07 

2. 6=5 f=0.1 C1=0.5 N=500 

2 1.37 1.28 1.37 (1.19) - 0.40 - 

4 1.75 3.22 1.56 2.13 1.75 (1.76) 3.22 (0.75) 0.53 0.30 

10 1.85 4.17 1.85 2.63 2.04 (3.22) 4.17 (1.46) 0.78 0.53 

15 1.53 3.70 1.85 2.63 1.96 (4.11) 3.84 (2.00) 0.92 0.65 

25 1.06 2.78 1.67 2.00 1.69 (5.34) 3.12 (2.87) 1.09 0.79 

3. =10 f=0.3 C1=0.5 N=500 

2 1.78 1.72 1.78 (1.16) - 0.48 - 

4 1.64 3.12 1.78 2.56 1.78 (1.58) 3.12 (0.89) 0.75 0.46 

10 0.92 2.04 1.30 2.13 1.45 (2.24) 2.17 (1.47) 1.15 0.76 

15 0.64 1.51 1.02 1.82 1.31 (2.51) 1.85 (1.79) 1.30 0.87 

25 0.40 0.99 0.71 1.41 1.19 (2.78) 1.51 (2.18) 1.45 0.98 

80 0.12 0.33 0.31 0.71 1.06 (3.14) 1.16 (2.86) 1.59 1.10 
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4. 6=10 f=0.I CI=0.5 N=500 

2 2.43 1.92 2.43 (1.23) - 0.27 

4 3.03 6.25 2.32 2.94 3.12 (1.89) 6.25 (0.87) 0.46 0.27 

10 2.08 5.00 2.27 2.94 2.56 (3.48) 5.26 (1.70) 0.82 0.53 

15 1.51 3.70 2.08 2.78 2.13 (4.41) 4.17 (2.30) 1.00 0.66 

25 0.94 2.44 1.69 2.50 1.72 (5.66) 3.03 (3.28) 1.20 0.81 

5. 6=5 f=0.3 C1=1.0 N=500 

2 1.06 1.06 - 1.06 (1.16) - 0.83 

4 1.12 1.47 1.12 1.39 1.14 (1.53) 1.47 (0.80) 0.88 0.63 

10 1.00 1.67 1.14 1.64 1.18 (2.17) 1.69 (1.33) 1.02 0.79 

15 0.81 1.52 1.05 1.64 1.16 (2.44) 1.64 (1.64) 1.10 0.87 

25 0.54 1.14 0.84 1.45 1.14 (2.73) 1.49 (2.03) 1.20 0.95 

80 0.16 0.41 0.37 0.83 1.06 (3.12) 1.19 (2.77) 1.37 1.06 

6. d=5 f=.01 C1=0.5 N=10,000 

5 1.06 1.19 1.05 1.14 1.07 (2.88) 1.19 (1.09) 0.52 0.23 

15 1.22 1.64 1.16 1.41 1.22 (6.41) 1.64 (2.39) 0.57 0.29 

25 1.33 2.04 1.25 1.64 1.35 (9.75) 2.04 (3.70) 0.62 0.35 

25 1.51 2.70 1.41 1.96 1.54(15.79) 2.70 (6.22) 0.70 0.45 

65 1.61 3.12 1.54 2.17 1.67(21.08) 3.12 (8.61) 0.77 0.52 

85 1.61 3.33 1.61 2.32 1.75(25.76) 3.45(10.89) 0.83 0.58 

Note: Dashes indicate that C2 is non -existent for these cases. The numbers 

in brackets are the optimal ro values given by (3.12). 

It is seen from the above tables that, for 
fixed d, f, C1, C2, and N, the efficiencies of 

of the estimators decrease after an initial im- 
provement as T increases. The efficiency gain in 
using these estimators increases as the coeffic- 
ient of variation C2 of the outlier units in- 

creases. Comparing the values in Table 1 with 
those in Table 5, we see that as C1 increases, 

the efficiencies of the estimators decrease for 
small values of T and increase after a certain 
number of outliers has been reached. Comparing 
values in Tables 1 and 3, we see that as in- 
creases from 5 to 10, gains in efficiency are 
not uniform. In fact, for large T, there is a 
greater loss in efficiency. This is due to the 
fact that the bias term of the estimators domi- 
nates the mean square error as 6 increases. 
Referring to Tables 1 and 2, 3 and 4, it is seen 
that as f decreases, gains in efficiencies of the 
estimators increase. 

To stress the effectiveness of these esti- 
mators, a fairly large population of N= 10,000 and 
a small sampling fraction of f=0.01 have been 
used. The results are given in Table 6. Note 
that for a few number of outliers in the populat- 
ion, the gain in using these estimators is not 
very considerable. However, as the number of 
outliers in the population increases, the effect- 
iveness of these estimators improves quite 
significantly. 
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It is possible to make the following general 
observations. The best estimator to use with 

respect to efficiency is Y3. Y2 has lower effi- 

ciency than Y1 for a small number of outliers, 

however, afterAa certain number of outliers has 

been reached, Y2 is^superior to Y1. Hence, Y2 is 

to be preferred to Y1 in the presence of a moder- 

ate number of outliers. For a small number of 

outliers, the post- stratified estimator Y4 is not 

as good as the other estimators because the allo- 
cation between the post -strata is likely to be 
poor, being very different from the optimum allo- 
cation in such cases. But, as expected, once a 

certain number of outliers is reached, it is su- 

perior to all estimators including Y0. 

Y3, the optimal estimator, requires a know- 

ledge of T, C1, C2 and 6 from the sample. We use 

these in the expression (3.12). Estimating ro 

using sample values could imply a departure from 

optimal efficiency of Y4. To study this possible 

departure, the efficiency of Y3 has been invest- 

igated for different values of (l +p), where 

0.0 < A < 1.0. Two situations have been invest- 



TABLES OF RELATIVE EFFICIENCIES OF Y3 FOR ro(l +A) 

7. 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

'0.6 

0.7 

0.8 

0.9 

8. 

0.0 

0.2 

0.4 

0.6 

0.8 

f=0.3 C1=0.5 C 
2 
=1.0 N=500 

2 10 15 25 80 

1.10 1.49 2.5 2.43 2.72 3.12 

1.26 1.41 1.37 1.30 1.20 1.06 

1.26 1.41 1.35 1.26 1.15 0.94 

1.26 1.40 1.31 1.19 1.04 0.69 

1.26 1.38 1.23 1.09 0.89 0.47 

1.25 1.35 1.15 0.97 0.74 0.33 

1.25 1.32 1.05 0.85 0.61 0.24 

1.23 1.29 0.95 0.74 0.51 0.18 

1.23 1.25 0.86 0.64 0.42 0.14 

1.21 1.21 0.77 0.56 0.35 0.11 

1.20 1.16 0.69 0.48 0.29 0.09 

d=5 f=0.01 C1=0.5 C 
2 
=1.0 N=10,000 

5 15 25 45 65 85 

2.88 6.41 9.75 15.79 21.08 25.76 

1.069 1.216 1.346 1.546 1.678 1.755 

1.069 1.216 1.345 1.545 1.673 1.746 

1.069 1.216 1.344 1.541 1.541 1.664 

1.069 1.216 1.343 1.535 1.648 1.697 

1.069 1.215 1.341 1.527 1.626 1 .656 

igated. The first one being a large population 
of size 10,000 with an associated small sampling 
fraction of 0.01 and the second being a small 
population size of 500 with a fairly high samp- 
ling fraction of 0.3. The results are given in 
Tables 7 and 8. From the preceding tables, it is 
seen that when there is a low number of outliers, 

the efficiency of Y3 is not significantly affect- 

ed by departures from optimal ro. As the number 

of outliers increases in the first (N =500) pop- 
ulation, even small departures from optimal ro 

result in low efficiency. Note that in the case 
of the second population (N =10,000), departures 
from optimal ro are not significant even for 

large number of outliers in the population. 

5. CONCLUSIONS 

When the sampling fraction f and the number 

of outliers T are small, use of the estimator Y1 

would result in substantial gains in efficiency. 

If f and T are large, use of Y2 is 

recommended. Y3 can be used to advantage if 
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values of C1, C2, and T are approximately 

known from previous surveys. Deviations from 

the optimal ro associated with Y3 will not affect 

the efficiency if T is small. If T is large and 
known, it is obvious that the post- stratified 

estimator Y4 should be used. 
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